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strategies that fit directly within a finite-volume MUSCL-type framework, in which dimen-
sion-by-dimension reconstruction of interface states based on extrapolated fluid properties
is the norm. In this scope, linear, sine-wave, and tangent hyperbola volume-fraction recon-
structions are examined for a range of problems, including advection of a volume-fraction
discontinuity, the Rayleigh-Taylor instability, a dam-break problem, an axisymmetric jet
Two-phase flow instability, the Rayleigh instability, and flow within an aerated-liquid injector. An implicit
Interface-capturing dual-time stepping approach, applied directly to a preconditioned form of the governing
Incompressible flow equations, is used for time-advancement. The results show that the sharpening strategies
are successful in providing two-to-three-cell capturing of volume-fraction discontinuities.

© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The development of strategies for sharply capturing the evolution of immiscible, two-phase flows has been an active re-
search area in computational fluid dynamics for decades. Computational strategies have been divided into two main classes:
Lagrangian tracking techniques [1-3] and Eulerian capturing methods [4-10], which evolve a marker function to distinguish
among the phases. The volume-of-fluid method (VOF) [4-7], in its various forms, offers the possibility of exactly guarantee-
ing the conservation of mass or volume, at the cost of a significant increase in coding complexity, particularly in three dimen-
sions. Level-set [8-13] methods evolve the signed distance function, instead of a Heaviside marker function, and are thus less
susceptible to numerical diffusion errors as the distance function is smooth near the interface. Curvature of the interface can
also be calculated more accurately using a level-set approach, and surface-tension effects [9] can be incorporated more pre-
cisely as a result. As the distance function does not obey a conservation law, there is no guarantee that mass/volume will be
conserved when the level-set function is advected. Complicated re-initialization procedures [9] can reduce these errors to
acceptable levels, as can hybrid approaches [10,11] that combine elements of VOF techniques. Ghost-fluid strategies
[12-14] have been shown to provide extremely sharp-interface-capturing when used with level-set techniques. More
recently, there has been a trend to simplify VOF procedures by introducing smooth basis functions that better represent a
discontinuity on the mesh-scale but do not require geometric reconstruction [15-17]. These techniques appear suitable
for incorporation into codes that adopt conventional dimension-by-dimension upwinding methods.

Another trend in modern computational fluid dynamics has been the development of flow solvers based on the use
of time-derivative preconditioning strategies. If implemented correctly, such techniques offer the potential to extend
‘density-based’ CFD codes to operate effectively at all flow speeds. At low Mach numbers, the schemes revert to variants
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of Chorin’s artificial compressibility method [18]. If the numerical flux formulae are properly designed, then a discretization
suitable for an incompressible flow, with a built-in mechanism for ensuring pressure-velocity coupling, will result [19-21].
These techniques can be extended to multi-phase mixture flows [20,22,23], and calculations for cavitating flows [19-23] and
two-flows within ‘barbotage’ injectors [24,25] have been reported. In a recent study [23], the LDFSS-2001 [19,20] and
AUSM+-UP [21] ‘all-speed’ flux-splitting schemes were compared for a range of problems involving multi-phase mixtures.
The performance of the schemes was found to be similar, but a clear need for better phase-interface-capturing was noted
in almost all cases. The purpose of this paper is to apply some newer approaches for interface-sharpening to alleviate this
problem. The outline of this paper is as follows. First, the governing equations are briefly described, along with a precondi-
tioning strategy for advancing the equations in time. Next, the flux-splitting scheme, higher-order extension, and interface-
sharpening schemes used in this investigation are outlined. Details of the time-advancement method are then presented,
followed by a discussion of results obtained for several test cases.

2. Governing equations

The governing equations are the incompressible Navier-Stokes equations written for a two-phase mixture as follows:
oV  oU

QP+ 50+

ST(E-E), kA — QS =0 (1)
k

where Q is the cell volume, i} is an outward-pointing normal vector to face k, and Ay is the area of face k. The inviscid flux
vector Ej - i, is given as

pva 0
p 0

Ec-fiy =i | pu | + |m| P, fi=mnd+nj+nk, iy =i-ii=un,+ vn,+wn, (2)
pv L7

pw ], Ln:],

the conservative variable vector is U = [p,«, p, pu, pv, pw]", and the primitive variable vector is V = [ot, p, u, »,w]". In this, ot is
the gas-phase volume fraction, u, v, and w are the Cartesian velocity components, P is the pressure, and the mixture density
is defined as p = p,a + p,(1 — o). The preconditioning matrix is defined as

oo T op, 7 0 0 0]
p . Py— P 7- 000
p= L VIR N, —p) = p 00 3)
Vige | u | O 0V refc
oy vpy=p) F- 0 p 0O
w wp,—p)  F= 0 0 p
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The eigenvalues of P~ (E - fi) are ii - i, i - i, i - fi, 1 (i - fi + /(i - 71, )* + 4V 2

rerc)» Where Vi is a reference velocity to be de-
fined later. It can be seen that this is a form of Chorin’s artificial compressibility method [18]. The viscous fluxes are formu-
lated for a Newtonian fluid and are closed by expressing the mixture viscosity as g = u,o + (1 — o). Unless otherwise
noted, the phasic densities are set to p,=1.137 kg/m® and p,=993.5 kg/m?, the phasic viscosities are set to
U, =1.788e—5 kg/(m-s) and y, = 8.564e—4 kg/(m-s), and the surface tension is set to 0.072 N/m.
The source vector S contains gravitational acceleration terms and a continuum surface force model (CSF). The CSF ap-
proach used is the conservative formulation of [26]. Here, the ith component of the CSF is expressed as a surface integral
over a mesh cell:

QS =~y [Voll (35 — fily) - () A (@)
k
In this expression, the surface tension is «, the normal vector at the phase interface is defined as
Fiin A a2 1/2
- o A do oo
= =i =72 5
b Vel Vel <0Xi 9xi> ®)

o is a smoothed volume fraction, and J; is the Kronecker delta. In this work, we adopt a simple Jacobi-type smoother involv-
ing averaging over nearest neighbors to calculate . The discretization of the gradient vector at the cell interface is as follows.
Given an interface k between two cells i and i + 1, we first define a vector connecting the cell centers as

T = (Xi1 —X)i+ Vior — Vi) + (i1 — 20k (6)
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then calculate the gradient at the cell interface by

where

(Vi + V1) (8)

NO| =

Vo =

Cell-centered expressions for |Va| in Eq. (8) are obtained from applying Green’s theorem. The interface flux in Eq. (4) is
evaluated if (Va), > 0.01/|%| and is set to zero otherwise.

3. Flux-splitting method

The LDFSS-2001 scheme [19,20], simplified for incompressible flows, is used in this investigation. Among other proper-
ties, LDFSS-2001 exactly captures a grid-aligned stationary contact discontinuity and contains a mechanism for preserving
pressure-velocity coupling at low speeds. The baseline compressible formulation is extended to incompressible flows simply
by allowing the physical sound speed to approach infinity. In LDFSS-2001, the interface flux is split into convective and pres-
sure contributions:

Em/z : ﬁi+1/2 = [ECJH/Z(VL,H]/L VR.:‘+1/2)} + EP.H]/Z(VL,H]/L VR.H]/Z)] : ﬁm/z (9)
where
Py P&
P P
Ecivrjp Tl = Uy p| pu | + Uy | pu (10)
pv pv
pw |y PW [

where the L/R notation denotes left and right fluid-property states at the interface. The split velocity components are defined
as

_ Py — Pr+ |Py — Py
U.ﬂz:am/z MZ—M1/2 (1—# (11)
t1/ szvfef,c‘]/Z
L pressure diffusion i
. . Py — Pg — |PL — Pg|
Ul p =012 |Mg +M <1+ (12)
i+1/2 c1/2 R 1/2
i szvfef,c,l/Z
L pressure diffusion J
In this, Van Leer/Liou split Mach number definitions based on the ‘numerical speed of sound’ a.,are used:
1 i
Mg =+4(Myp+1), Myg=—" (13)
4 Ac1)2
with the velocity component normal to the interface given as
ﬂL/R = Nyxiv12UR + Nyiv12 VR + Nziv12WiR (14)
and
17, 1 _1
Mij2 =5 M =5 (My +Mi]) = My + (Mg ~ [Mal) (15)

The ‘numerical speed of sound’ is given as

Uei = Vi + 4V?ef,c,]/2 (18)
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Unless indicated differently above, the “1/2” notation represents an arithmetic average of left and right states:

[ =gl + 1o a7)

The pressure component of the interface flux is expressed as:
0
0
Epicip - Mlig1p = | My D12 (18)
ny
nZ

with the interface pressure defined as

1 i P12V ret
12 A2 s
Pip=5|P +PR+#(pL— p) + TP g (19)
p.1/2 Qp1/2

velocity-diffusion

and the ‘numerical sound speed’ re-defined as

Q1o = /12, +4Vis 1) (20)

Pressure- and velocity-diffusion mechanisms embedded within the LDFSS-2001 flux are highlighted in Egs. (11), (12), and
(19). As discussed in [23], these terms, in addition to advective upwinding, are the dominant sources of numerical diffusion
at low Mach numbers. The pressure-diffusion mechanism acts to preserve pressure-velocity coupling, while the velocity-dif-
fusion mechanism acts as an additional normal stress that also suppresses oscillations in the pressure field. The choice of
reference velocity can have a significant impact on the convergence of the dual-time stepping procedure described later
and on the accuracy of the obtained solutions. In this work, we use two different definitions, one for the convective flux split-
ting (V2;.) and the other for the pressure flux splitting (erf_p). Our prior work [25,27] and that of others [28,14] has shown
that for unsteady low Mach number flows, one should choose the reference velocity V2, such that a local minimum Courant
number of unity is maintained:

- AxXmin\ 2
V?ef,c = max (ulfnax’ ( Ar;m) ) (2])

where Axp, is @ minimum cell dimension and |ii|,,, is the maximum convective velocity present in the flowfield. The ref-
erence velocity used in the pressure flux splitting is defined as

Vi = [foa (22)

This definition means that the velocity-diffusion component of the interface pressure will not become excessively large as
the time step becomes small.

4. Higher-order extension

The baseline technique for extending the first-order LDFSS-2001 scheme to higher-order spatial accuracy is the Piecewise
Parabolic Method of Colella and Woodward [29]. Given that V = [o, p, u, »,w]", we first define left- and right-state interface
values Vz;.1,2 by the following algorithm:

AV = Vi -V

1o N - L
S; = sgn {j (AV; + AV,»_l)} min (‘E(Avi + AV, 2|AV|, 2]AV

), AV, X Avi—l >0

=0, otherwise
1

(Vi+\7i+1) +6

(Si + Sis1)

No| —

Viici2 = Veivp =

For sufficiently smooth data, this reduces to a fourth-order averaging operator:

1 . .
( IV (Vi + Vi) (24)

<t

Viisip = Veipe = i+ Vi) —

ol ~
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Monotonicity is then enforced by the following algorithm:
if sgn[(Vii12 — Vi) (Vi — Vgii12)] = —1, then
VL,i+1/2 = VR.i—]/Z = ‘71'
else
C= VL.:‘+1/2 - VR,i—l/Z

I .

D=6|V;- E(VL,i+1/2 + Vriz12)
. (25)
if(D > C) then

VR.i—l/Z = 3‘71' - 2‘7L.i+1/2
else if(—C > D) then

VL,H]/Z = 3‘71' - 2‘7R.i—1/2
end if

end if

The first ‘if block in Eq. (25) resets the interpolation function to a constant if V; is a local maximum or minimum. The second
‘if block in (25) resets either the left-state value at interface i + 1/2 or the right-state value at interface i — 1/2 so that the inter-
polation parabola that connects the interface states with the state at the cell center is monotonically increasing or decreasing.
It is also possible to enforce physical constraints (such as positive pressures and bounded volume fractions) at the cell inter-
faces by a similar cell-by-cell resetting algorithm. The PPM requires a seven point stencil in each coordinate direction.

5. Sharp-interface-capturing

Bounded downwind differencing schemes, such as CICSAM (compressive interface-capturing scheme for arbitrary meshes)
[5] and THINC (tangent of hyperbola for interface-capturing) [16,17], achieve sharp-interface-capturing by introducing a con-
trolled amount of numerical dispersion in the vicinity of phase interfaces. Our attention focuses on algebraic interface-cap-
turing schemes [15-17], which are similar to MUSCL-type reconstruction techniques in that an assumed form for the
property variation of the volume fraction within a mesh cell is chosen. These typically do not use geometric reconstruction
of the interface within a mesh cell, as is done in classical VOF methods, and as such, they are easier to implement. In THINC,
the tangent hyperbola function is used as a model function for a discontinuous volume fraction within a mesh cell. In prin-
ciple, however, any model function o/(x) that can connect two states «; ; and o;,; in a monotone, compact fashion, such that

1 Xit1/2

M A

o(x)dx (26)
Xi-1/2
can be used. In this study, we consider several interface-sharpening schemes, constructed using different model functions. A
general goal might be to express the interface flux as it is written in Eq. (9), with og;_1/2 = ot(xi_12) and o 12 = o(Xiv1/2),
similar to conventional practice for MUSCL TVD schemes. To start, we consider piecewise linear and sine-wave reconstruc-
tions of the volume fraction field. These are shown in Fig. 1 for the specific case of «;_; = 0.1, o; = 0.3, ;.1 = 0.95. For the
linear and sine-wave reconstructions, we require that the volume fraction distribution within cell i be bounded by the
cell-average values o;_; and o, +:

oi(X) =01 +H <X_X;”2 - x,> (0iz1 — 04i-1), where (27)
Xit1/2 — Xi—1/2

H($)=0, ¢<0

Hg) =, 0<op<1 (28)

H(¢p)=1, ¢>1

Enforcing Eq. (26) gives a value for ;. If only information at left and right states is required (og; 1,2 = %(X;_1,2) and
o it12 = ®%(Xit1,2)), then it may not be necessary to solve for x; directly.
The result for the linear model is as follows. Let & = % and initially set

ORi-1/2 = %i-1 (29)
OLit1/2 = %it1

to provide a downwind difference approximation. The other state is given by the following conditional statements:

Oiv12 = Qi1 + \/2[1(0(,41 — OC,;]), if |é€\ >1x ‘10710 and C/XA< 0.5
— (30)

ORi1j2 = i1 — /2(1 = &)1 — % 1), if [2]>1x107"° anda > 0.5
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Fig. 1. Volume-fraction reconstruction using several methods.

For the sine-wave discontinuity model,

H(¢)=0, ¢<0

H(g) =5 |1 +sin(m(s - )| 0<gp<1 31)
Hi¢)=1, ¢>1
It is not possible to determine X; explicitly for this model. Again defining d:ﬁ and setting ogi_1/2 = %i_1,

o ir1/2 = &y initially, we curve-fit the transcendental equation that results from satisfying Eq. (26) to yield:

Ui = i1+ [1— (1 =200y — ), if |2 >1x107"° and & < 0.5
2 2.035210.6356 e 10 . (32)
ORi-1/2 = Qit1 — [1 — (ZOC - 1) ’ } ’ (Ofpr] — OC,',]), if |OC‘ >1x10" ando > 0.5

For the THINC model [16], the volume fraction is represented as

o (X) = % {1 +ytanh (ﬁ (Xﬁx%]/2 - x,))} (33)

Xiy172 — Xi-1)2

where 8 is chosen as 3.5 in order to localize the discontinuity to approximately one cell. Enforcing Eq. (26) for this model
leads to the following procedure for determining left and right states:

tanh(B) + C )

1
Apivij2 = jo‘mﬂx (1 + Vm

X (34)
ORi-1/2 = jfxmax(l +70)
where
. o+ & _ o 12
B =exp {yﬁ(zamaﬁg 1)} e=1x10 (35)
C = (B/cosh(p) — 1)/ tanh(p)
and
Otmax (%1, %i-1), Y = SEN(Aiy1 — %i1) (36)

The THINC model is designed to transition the volume fraction between 0 and om.x = max(a; 1,0;_1). If, as in the case
shown in Fig. 1, min(a;1,0;_1) > 0, then the predicted left or right state can be smaller than min(o;, 1, %_1). This does not
appear to be a problem when an exact Riemann solution for the traveling volume fraction is used, as in [16] and [17], but
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if implemented in a more approximate manner, with og;_1/» = o(X;_1,2) and o ;.12 = %(Xi41,2), this can lead to a loss in mono-
tonicity unless ‘clipping’ of the left-/right-state values is performed. To alleviate this, we re-define the reconstruction func-
tion as

0i(X) = Otmin + % {l +ytanh <ﬂ ()(xi& - x,>)} (37)

it1/2 — Xi-1/2

Enforcing Eq. (26) leads to the following algorithm: (referred to as THINC-M (for monotone THINC)):

o = i +1O( ‘1+'\ M

Li+1/2 — “min 2 max /1+Ctanh(/5) (38)
1

XRi-1/2 = Olmin + j"‘max(1 +70)

where

(04 — Otmin + &) )} 12

B=exp |yB(2————F———-1]|, €=1x10

p [//3( A x (39)

C = (B/cosh(p) — 1)/ tanh(p)
and
Olmin = MIN(0tiyq, Gi1)
Olmax = MAaX (011,04 1) — Omin (40)
Y = Sgn(%iy1 — Gi-1)

Following [16] and [17], one can also determine left/right-state interpolations by considering the integrated average value of
the flux of material crossing a cell boundary, rather than just the end-states, in the Riemann solution. This leads to another
representation for left and right states, defined as follows using THINC-M:

1 Xiy1/2—Uit1/2At
Opiv1j2 = Ui AL / oi(x)dx, U122 0
Xip1/2
1 Xip1/2—Uir1/2At (41)
ORir1/2 = Ui oAt / O (X)dx, Uiy <0
I+ Xit1/2
Generalizing to an arbitrary cell interface, we have:
1 +
OCL,z’-¢-1/2 = Olmin + jfxmax(‘1 - ’))D ) 42
1 B (42)
ORi-1/2 = Omin + jocmax(l +yD7)
with
1 tanh(f) +C .
+ = — . —_—— :
D' = Bvinn +6) In <cosh(ﬂvH1/z) T+ Ctanh(p) smh(ﬁv,ﬂ/z)>
_ 1 .
D = m In(cosh(pvi_1/2) + Csinh(Bvi_1,2))
Bexp (2% 2t D 1) ] oo1x0 (43)
max
C = (B/cosh(p) — 1)/ tanh(p)
|ti 12 - i1 2] AL o S o
Viy12 = m, AXii1)2 = Xejp1 — Xei
and

Olmin = TN (041, 1)
Olmax = MaX(%is1,%i—1) — Omin (44)
V= sng(tis1 — %i-1)
A similar formulation for the original THINC scheme has been presented in [17]. Note that in this form, the left- and right-
state values will be a function of the time step. This model is denoted as THINC-EM (for THINC exact Riemann - monotone) in
the discussion that follows. As our implementation of the original THINC does not use the exact Riemann solution, we refer

to this implementation as THINC-AR (for THINC approximate Riemann) to avoid confusing the performance of this variant
with the more exact reconstruction presented in Refs. [16,17].
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All interface-sharpening schemes are implemented with a final step that over-rides the reconstruction procedures if the
initial data for, «;, and «;,; is not monotone:

ALiv1/2 = ORji—1/2 = Ui, if sgnf(oier — o) (0 — oi_q)] = —1 (45)

6. Time-advancement

Except for some pure-advection test cases, the results presented later use a dual-time stepping method to solve Eq. (1).
The implicit formulation at a particular sub-iteration k is given as:

1 3 o0\ &R,

Vnﬂ.kﬂ _ V'nﬂ‘k + AVHH.I( (46)

n+1k

n+1,k
AR — % (%Uml.k U %Uml) + (Z(E _ Ev)k . ﬁkAk _ Q§) ,
k

where ?TRVS is the Jacobian of the steady part of Eq. (1). This system is approximately solved using an incomplete LU decom-
position strategy at each sub-iteration. Some problems allow the ‘freezing’ of the Jacobian matrix elements over the duration
of the sub-iterations, but in others, a full re-evaluation and re-factorization is required for stability. The elements of % are
constructed from local Jacobians of the flux formulae. As an example, an approximate linearization of the flux balance
E—H/z g2 — E,-,Uz -Ti_1,2 yields a tri-diagonal structure of the following form:

8(Ei+1/2 : ﬁi+1/2 - Ei—l/z . ﬁi—l/z)
ov

As pointed out in [15], the abrupt change in the fluid properties across a sharp interface can lead to a loss of diagonal dom-
inance in this system and to numerical instability. To mitigate this effect, we follow [15] and use instead the linearization

AV = A AV + (Al — AL ) AV — AL AV (47)

a(EiH/Z : ﬁi+1/2 - Ei—l/z : ﬁi—l/Z)

Y
This treatment has been found to be essential to ensure good stability properties, but small time steps are still required for
problems with rapidly-propagating interfaces. Typically, a one-to-two order-of-magnitude reduction in the relative residual

of the continuity equation (5 to 25 sub-iterations) is required to yield adequate mass conservation. The time step A7 is set to
5-20 At for the calculations presented next.

_ 1 _ _
AV ~ Ai+]/2Avi+l + j (Aiil/Z - Ai—]/Z) + (Aiil/Z - Ai—]/Z) AV; — A,-JZUZAV,',] (48)

7. Results
7.1. Advection of discontinuities

Fig. 2 compares predictions of the advection of a square block under the influence of a velocity field &i = —1.0i — 1.0j (m/s).
Only the vapor mass conservation equation is solved in these calculations. The 1 m x 1 m mesh contains 128 x 128 cells and
the square block is initially placed at the center of the mesh. The calculations are evolved for 400 iterations at a CFL number
of 0.25 using Huen'’s method. Six schemes are compared: PPM, linear reconstruction, sine-wave reconstruction, THINC-AR,
THINC-M, and THINC-EM, and three contour levels, corresponding to o = 0.05, & = 0.5, and « = 0.95, are shown in the fig-
ures. The PPM reconstruction starts to smear the discontinuity, while the others maintain a sharp interface, spread over
about two cells. The THINC-AR reconstruction, implemented as described above, distorts the shape of the square. Ref.
[16] and [17], however, show that good results can be obtained if THINC-AR is used with the more exact integration scheme
of Eq. (41). The predictions provided by the linear reconstruction, sine-wave reconstruction, THINC-M, and THINC-EM are
virtually indistinguishable. Maximum and average percentage mass errors for the schemes are shown in Table 1. No mass
error (at least to six decimals of precision) is found in the PPM, THINC-M, and THINC-EM results.

Fig. 3 presents a similar comparison for a rotational velocity field i = sin(x) cos(y)i — cos(x) sin(y)j. The computational do-
main extends from O to 7 in the X and Y-directions and contains 128 x 128 cells. The initial volume-fraction distribution is a
circle of radius 7t/5 centered at X=m/2, Y=(7 + 1)/5. The calculations are advanced in time for 2000 iterations at a CFL of 0.25,
the velocity field is then reversed, and the calculations continued for 2000 iterations. The expected response is the deforma-
tion of the circular interface into a spiral shape and the return of the interface to a circular shape at the end of the integration.
Shown in Fig. 2 are the o= 0.05, = 0.5, and o = 0.95 contours at 2000 and at 4000 time steps. The PPM reconstruction is
again excessively diffusive, and the THINC-AR reconstruction results in excessive shedding of ‘flotsam’ and ‘jetsam’. The
linear, sine-wave, and THINC-M reconstructions all capture the interface sharply, with ‘jetsam’ appearing only at the tail
of the spiral, but show evidence of ‘stair-stepping’ along the interface. The THINC-EM reconstruction provides the best
results, smoothly capturing the spiral form of the volume-fraction distribution and returning to a circular shape with
minimal error (at least visually). Table 1 shows that, with the exception of THINC-AR, the mass error is less than one-half
percent and is approximately 0.01% for the PPM and THINC-EM reconstructions.
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Fig. 2. Advection of a square wave: (a) PPM, (b) linear, (c) sine wave, (d) THINC-AR, (e) THINC-M, (f) THINC-EM) (solid lines: 200 iterations; dashed lines:
400 iterations).

Table 1
Percent mass errors for pure-advection problems.
Scheme Percent mass error (square ) Percent mass error (rotation)

Max Average Max Average
PPM 0.000 0.000 0.010 0.009
Linear 0.005 0.002 0.154 0.098
Sine 0.005 0.002 0.419 0.314
THINC-AR 0.031 0.014 19.156 8.943
THINC-M 0.000 0.000 0.215 0.174
THINC-EM 0.000 0.000 0.012 0.010

Table 2 presents results obtained for Zalesak’s notched-disk rotation problem as presented by Yokoi [17]. The two-dimen-
sional computational domain ranges from 0 to 1 in both directions, and three mesh densities (50 x 50, 100 x 100, 200 x 200
cells) are used. The notched circle has a diameter of 0.30 units and is centered at x = 0.5 and y = 0.75. The notch width and its
displacement from the upper edge of the circle are both 0.05 units. The circle is rotated about the point x = 0.5, y = 0.5. After
one rotation at a velocity ii = —(y — 0.5)i + (x — 0.5)j, the position of the rotated object is compared to the original position,
and the error is calculated as

>oijloy — O‘?j‘
Zi.ja?j
where the superscript 0 indicates the initial volume-fraction distribution and the superscript n indicates the final time step.
A time step of 27t/2000 was used for the 100 x 100 grid; the time step was doubled for the 50 x 50 grid and halved for the

200 x 200 grid. The THINC-M and THINC-EM had the lowest error for each grid size while the PPM had the largest. The
trends with mesh refinement are similar to those shown in Ref. [17], though the exact values of the error are different.

Error = (49)

7.2. Rayleigh-Taylor instability

A classical test case for two-phase mixture models is the gravity-driven Rayleigh-Taylor instability. Our initial modeling
of this problem follows [3,6,11]. The computational domain is a 1 m x 4 m rectangle discretized into 128 x 512 cells. The
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(d) (e) (f)

Fig. 3. Distortion of a circle in a rotational velocity field: (a) PPM, (b) linear, (c) sine wave, (d) THINC-AR, (e) THINC-M, (f) THINC-EM) (dark solid black:
initial solution; solid black: 2000 iterations; dark dashed black: 4000 iterations).

Table 2

Errors for Zalesak’s test problem.

Scheme/grid size 50 x 50 100 x 100 200 x 200
PPM 3.53 x 1072 1.80 x 102 9.30 x 1073
Linear 1.60 x 102 734 x 1073 573 x 103
Sine 1.51 x 1072 6.93 x 103 541 x 103
THINC-AR 2.37 x 1072 9.54 x 103 478 x 1073
THINC-M 1.56 x 102 5.60 x 103 294 x 103
THINC-EM 1.63 x 1072 5.74 x 1072 294 x 1073

interface is described by the function y(x) = 1.95 + 0.05 cos(27x), the density of the heavier fluid is 1.225 kg/m?>, the density
of the lighter fluid is 0.1694 kg/m?>, and the viscosity for both fluids is set equal to 0.00313 kg/(m-s). The surface tension is set
to zero for these calculations, and the pressure field is in hydrostatic equilibrium. The time step is 0.00125 s, which leads to
% equal to 6.25 in Eq. (21). Volume-fraction contours for o = 0.05, &= 0.5, and « = 0.95 are shown at times t=25s, 75, 85,
and 9 s for THINC-EM in Fig. 4. The predictions compare well with those presented in [3,6] using VOF-type methods. Fig. 5
compares predictions of volume fraction at t =12 s (45 contours, ranging from 0 to 1) for the PPM, linear, THINC-M, and
THINC-EM reconstruction methods. The fact that THINC-EM is generally more dissipative than either the linear reconstruc-
tion or THINC-M is apparent, as those schemes eventually capture a secondary instability on the liquid jet surface and
provide a sharper, though asymmetric rendering of the streak-like structures present as the heavier fluid disperses within
the lighter fluid. Table 3 shows the percent mass error for the heavier and lighter fluids. The maximum error occurs just after
initialization for all cases and its relatively high value may be due to the process of adjusting the analytic interface profile to a
form consistent with the mesh resolution.

Chandrasekhar [30] presented the dimensionless growth rate n = n* (v /gz)l/ ? for the Rayleigh-Taylor instability as a func-
tion of the dimensionless wave number k = k" (v? /g)]/ ? where n* is the growth rate and k" is the wave number. The solution
is parameterized by the Atwood number (p, — p;)/(p, + p;)(where p, > p,) with the two fluids having equal kinematic
viscosities and neglecting surface tension. An additional set of calculations of the Rayleigh-Taylor instability was performed
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Fig. 5. Evolution of interface in Rayleigh-Taylor instability — effect of reconstruction scheme (t=12s).

Table 3
Percent mass error for Rayleigh-Taylor instability.
Scheme Percent mass error (light) Percent mass error (heavy)

Max Average Max Average
PPM 0.252 0.117 0.239 0.112
Linear 0.252 0.095 0.239 0.091
THINC-M 0.252 0.110 0.239 0.105
THINC-EM 0.252 0.089 0.239 0.085

to compare with Chandrasekhar’s solution. Following the modeling of Daly [31] and Pan and Chang [15], the interface
position is fixed and an initial velocity is assigned to the two fluids as

i sin () exp (77?”) y>0 v =AY (o (E> exp (M 0)
TAAY <} X —7ly| ' ; 2L L P L
2 sin () exp () y <0

U=
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Fig. 6. Disturbance amplitude versus time (Rayleigh-Taylor instability; THINC-EM).
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Fig. 7. Dimensionless growth rate versus Reynolds number (Rayleigh-Taylor instability; THINC-EM).

where A = 2L is the wavelength of the perturbation, A is the amplitude, and Ay is the mesh spacing in the vertical direction.
For the case under consideration, L = 0.02,A = 0.1,Ay =5 x 107*, the height of the domain is 6L, the Atwood number is 1/3,
the gravitational acceleration is set to unity, and the grid contains 40 x 120 cells. Three Reynolds numbers were tested,
Re =39, 72, and 176, where the Reynolds number is defined as Re = @ Kinematic viscosities corresponding to these
Reynolds numbers are v = 2.05 x 107, 1.11 x 107, and 4.54 x 107> m?/s.

After an initial transient, the exponential growth rate becomes linear and is the slope of the curve of a log of the amplitude
versus time plot, where the amplitude of the instability is defined as the average absolute displacement at the bounding edge
and line of symmetry at the center of the wave. Numerical results for the three Reynolds numbers using the THINC-EM
method are presented in Fig. 6. The dimensionless growth rate is presented versus Reynolds number in Fig. 7. The results
compare well with that of Chandrasekhar [30].
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7.3. Dam-break problem

Another classical test case is the dam-break problem. In our variation, we follow [11] and consider a 6 m x 1.5 m rect-
angular domain discretized using a uniformly spaced 480 x 128 cell mesh. Liquid water (p,=1000 kg/m?, jy=1e-3 kg/(m-s)) is
placed inside a rectangle extending from X=0m to X=1 m and from Y=0m to Y= 1 m. Air (p, = 1.0 kg/m>, y,=1e-5 kg/(m-s)
is located everywhere else, and hydrostatic equilibrium is enforced for the pressure field. The time step is 0.0002 s (A"A";"‘ =80

a 'f b
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Fig. 8. Predictions of column height (a) and surge (b) for two-dimensional dam-break problem.
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Fig. 9. Time evolution of liquid volume fraction for two-dimensional dam-break problem (THINC-EM).
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Fig. 10. Effect of different reconstruction schemes (t = 2.56 s).

Table 4
Percent mass errors for dam-break problem.
Scheme Percent mass error (gas) Percent mass error (liquid)

Max Average Max Average
PPM 0.002 0.001 0.015 0.009
Linear 0.010 0.004 0.077 0.036
THINC-M 0.006 0.003 0.044 0.025
THINC-EM 0.006 0.004 0.044 0.028

in Eq. (21)). No-slip boundary conditions are applied on all surfaces. Fig. 8(a) and (b) compare the interface position along the
far-left wall and along the bottom wall with data from Martin and Moyce [32]. The interface position is normalized with
respect to its initial value (L), while the time is non-dimensionalized by multiplying it by /gL, with g=9.81 m/s®. Good
agreement is indicated initially but some deviations appear for later times. These may be the result of insufficient resolution
of frictional effects. Fig. 9 presents snapshots of the evolution of the water front at different time instances for the THINC-EM
scheme. The liquid volume fraction (45 contours, ranging from 0 to 1) is shown. Weak instabilities present on the surface of
the liquid sheet are excited as the colliding water stream detaches from the right side and upper walls, producing a compli-
cated Kelvin—-Helmholtz type pattern at later times. Filaments of fluid are periodically detached from the evolving sheets,
and several instances of ‘mixed-out’ regions of fluid becoming more coherent are present at later times. Fig. 10 compares
snapshots at t=2.56 s from the PPM, linear, THINC-M, and THINC-EM reconstructions. The PPM reconstruction is clearly
more dissipative, while the others display a sharp capturing of the breaking wave. Table 4 shows that the percent mass errors
for the gas and liquid phases are less than 0.1% over the 20,000-iteration duration of the calculations. Snapshots from a three-
dimensional calculation of the dam-break problem are shown in Fig. 11. The computational domain is extended 0.5 m in the
Z-direction, and the mesh contains 480 x 128 x 21 cells. The breaking wave displays a clear three-dimensional structure, and
the calculation captures the shedding of small pockets of material as the breaking wave ‘splashes’ onto the incoming stream.

7.4. Axisymmetric jet instability

The next case considered corresponds to calculations of interfacial instability growth along the surface of a liquid jet, exit-
ing into quiescent gas. This case corresponds to that considered computationally by Liang and Ungewitter [33] (though with
a much more severe density variation in the present case) in their studies of wind-induced jet instability using volume-of-
fluid methods. Chigier and Reitz [34] present an excellent review article that surveys key developments in primary atomiza-
tion theory. One item emphasized is the use of linear stability analysis to predict the initial growth of instabilities along a
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Fig. 11. Isosurfaces of «=05 for three-dimensional dam-break problem (THINC-EM).

phase interface. Such analyses can be conducted under various assumptions, and the most detailed theories consider shear
within the gas and liquid phases, as well as the interfacial tension, as driving forces for instability growth. Results are gen-
erally correlated in terms of Weber and Ohnesorge numbers, the former representing the ratio of inertial forces to interfacial
forces, and the latter representing the ratio of viscous forces to interfacial forces. Many theories for primary atomization use
the wavelength of the most amplified disturbance (for fixed Weber and Ohnesorge numbers) as being proportional to the
diameter of the droplets that are initially separated from the jet. The dispersion equation governing linear wave growth
has been solved numerically by Reitz [35], and the results for wavelength of the most amplified disturbance and its growth
rate curve-fitted as functions of Weber and Ohnesorge numbers:

A_ g0t 0.452°%)(1 + 0.4(ZWe°*)*7)
a (1+0.87Wel®)0®
where a is the initial jet radius, 4 is the wavelength of the most amplified disturbance, We, = p,U%a/q is the Weber number
based on the gas-phase density and the relative velocity U, Z = We?* /Re; We; p,U*a/a, Re; p,Ua/u,, and ¢ is the interfacial
tension.

The growth rate Q determines the rate at which an initial perturbation with amplitude 1 grows in time, assuming an
exponential dependence: ;(t) = 17, exp(Qt) with

[plcﬁ} 0.34 + 0.38We,’

(51)

)

T (1+2)(1+ 1.4ZWe)08 (52)

[

To test the ability of the schemes to replicate the initial stages of jet instability, a test case involving an axisymmetric water-
jet exiting into quiescent air is considered. The domain extends 0.01 m in the X-direction and 0.02 m in the Y-direction and the
jet radius is 0.005 m. Periodic boundary conditions are enforced at X = 0 m and X = 0.01 m, thus simulating the evolution of a
temporal disturbance. The velocity of the gas portion is set to zero initially, and the liquid velocity is set to 7.694 m/s. This
value corresponds to the solution of Eq. (51) for the case where Z =0 (inviscid flow) and A=2 a=0.01 m. For this case, the
growth rate is estimated to be about 100s~! from Eq. (52). A grid containing 238 x 272 cells, uniformly spaced over a
0.01 x 0.01 domain but stretching vertically to the upper boundary located at Y =0.02 m is used, and the calculations were
evolved at a time step of 3e-6 s (A"A"t"n =20 in Eq. (21)). The calculations were initialized by specifying the normal velocity
component in the liquid jet (Y < 0.005 m) as [33]

v(x,y) = 0.001 sin <2T”x) (().gﬁ) (53)
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Fig. 12 presents normalized amplitudes for the PPM and THINC-EM reconstructions. Calculations performed using the lin-
ear and the THINC-M reconstructions diverged. Amplitudes were determined by averaging the maximum and minimum
deviations from the nominal interface position at Y =0.005 m as extracted at each time step. The growth rate is the slope
of the log of the normalized amplitude; a true linear evolution of the disturbance would yield a constant slope versus time.
Asymptotic growth rates (indicated somewhat subjectively by linear curve fitting over the interval from t=0.0075 to
t=0.03 s) indicate that the PPM and the THINC-EM results are reasonably close to the theoretical value of 100 s~'. At later
times, the growth rate slows for both methods, and the wavelength of the interface disturbance increases. The effect of
THINC-EM in maintaining a sharp liquid-vapor interface is shown clearly in Fig. 13, which plots contours of o« =0.05,
o =0.5, and o = 0.95 at several instances in time. The gray shaded region indicates the initial position of the jet. At the last
time instance shown, the wave length of the disturbance in the THINC-EM calculation is near the theoretical value of 0.01 m,
while it is shorter for the PPM calculation.
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7.5. Surface tension - driven instability (Rayleigh problem)

In this case and the next, only the THINC-EM scheme is used. To validate the implementation of the continuum surface
force (CSF) model of [26], the evolution of a cylindrical (2D) and a spherical (3D or axisymmetric) water drop in a quiescent
fluid is considered. A water drop of radius 0.0025 m is embedded in a quiescent, constant-pressure fluid. The expected re-
sponse is arise in the bubble pressure to theoretical values of py,, — P, = ﬁ for a cylindrical drop and py,o, — P, = 2 ﬁ for
a spherical drop. Fig. 14 shows that the theoretical result is reached in all cases and remains approximately constant over
time. As is common for a CSF model, ‘parasitic velocity currents’ [26] are observed in all cases, but these perturbations do
not amplify to the point that the calculation is destabilized and the structure of the bubble is disrupted.

Chandrasekhar [30] presents an analytic solution to the Rayleigh problem involving the evolution of a surface instability
on an axisymmetric cylindrical jet due to surface-tension effects. The initial amplitude, Ao, of the disturbance will increase
with time due to surface tension, g, according to the relation A = Age™ !, where n* is the growth rate. The analytic solution is

2 g kI] (k) 2
=80 Tk (1-#), (54)
where I; (k) and I (k) are modified Bessel functions, a is the jet radius and p is the density of the liquid. The solution is nor-
malized, resulting in a dimensionless growth rate, n = n*/+/0/(a3p), for a given dimensionless wave number k = k"a, where
the wave number k" = 27/ A.
In the present work, an axisymmetric cylindrical water-jet of radius a = 0.001 m is placed in a domain of radius [ = 3a and
varying axial length A, the remainder being filled with air. The profile of an initial perturbation of the water-jet surface given
as

¢ =a—r—Aycos(2mx/A) (35)

where ¢ is the interface location and Ay = 0.01a. The initial velocity is set to zero, and the initial pressure is constant. The
grid consists of 101 radial nodes and a varying number of axial nodes (depending on A) with Ax = Ar. A symmetric boundary
condition is used at the axis of the jet, a constant-pressure condition is enforced at the r = [ boundary, and periodic boundary
conditions are applied at x = 0 and x = A, following the numerical work of Menard et al. [13].

Qualitative predictions of the time history of the instability, showing the eventual breakup of the jet, are presented in
Fig. 15 for A = 4a = 0.004 m. Fig. 16 presents a comparison of the predicted disturbance growth rate with the analytic solu-
tion of Eq. (54). Dimensionless wave numbers were varied by holding the radius of the jet constant while varying the length
of the jet. The computational results are in close agreement with the analytic solution for each of the five wave numbers.

7.6. ‘In-out’ aerated-liquid injector

The last test case considered in this study involves flow within an aerated-liquid (or ‘barbotage’) fuel injector. Devices of
this type have been tested at the Air Force Research Laboratory for use in accelerating primary jet breakup in hydrocarbon-
fueled scramjet engines. A schematic of an ‘in-out’ injector, in which aerating gas is injected through a central tube into a
co-flowing liquid stream, is shown in Fig. 17. The specific configuration considered [36] injects nitrogen gas through the end
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Fig. 15. Time evolution of jet surface (Rayleigh instability; THINC-EM ).
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Fig. 16. Dispersion relation for Rayleigh instability (THINC-EM).

of the tube, rather than through an array of holes as shown in the schematic. The operation of an aerated-liquid injector of
this type is parameterized by the gas-to-liquid mass ratio (GLR). Low values of the GLR (0.15% or less) result in the intermit-
tent passage of slugs of gas and liquid through the injector. Higher values lead to a core-annular flow structure in which the
aerating gas pushes the liquid toward the walls of the discharge tube. Both situations have been simulated numerically using
a compressible two-phase mixture model [25]. In the present work, we adopt the incompressible flow model described
above to simulate a case for which the GLR is approximately 0.115%. Inlet gas velocities for the two cases are 2.34 m/s
and 4.69 m/s, and the liquid injection velocity is initially set to 0.586 m/s. Bernoulli-inflow boundaries are applied at the
liquid water inlet, whereas a fixed volume flow rate is applied at the inlet of the gas injection tube. The actual inflow
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Fig. 17. Schematic of ‘in-out’ aerated-liquid injector (from Ref. [36]).
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Fig. 18. Evolution of vapor mass within ‘in-out’ aerated-liquid injector (THINC-EM).

conditions for the liquid jet (and thus the GLR value) will evolve over time. A two-dimensional analogue of the three-dimen-
sional injector described in [36] is used, with the circular tube replaced by a slot. The mesh contains 294,000 interior mesh
cells, distributed over 30 blocks. The calculations were evolved at a time step of 1e-6 s (A"Aﬂgi“=20 in Eq. (21)) for a period of
0.06 s using the THINC-EM scheme.

Fig. 18 compares the vapor mass within the system to the value resulting from the time integration of the vapor mass
flow rate. A perfect correlation should be achieved prior to the exiting of the first slug of vapor from the tube. This does
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Fig. 20. Evolution of vapor volume fraction in ‘in-out’ aerated-liquid injector (GLR = 0.115%, THINC-EM).

not happen exactly, as discrete bubble-collapse events induce very high velocities (~60 m/s) that limit the ability of the
time-advancement method to converge the sub-iterations properly. Fig. 19 presents inlet and outlet vapor mass flow rates
versus time. The outflow mass flow rate shows features characteristic of a core-annular structure in the initial response and a
slugging response at later times. Fig. 20 presents discrete snapshots of vapor volume fraction. Bubbles are initially formed in
the relatively slow-moving fluid upstream of the discharge tube. These progress rapidly through the discharge tube and are
deformed and fragmented by shearing stresses. At later times, the bubble shapes are qualitative agreement with images for
GLR ~0.08% from [34]. The predicted bubble shapes are not as rounded as those observed in the images. This might be attrib-
uted to the relative reduction in surface-tension force in the two-dimensional calculation, the presence of side walls in the
experiment, and differences in slot injection (modeled) versus injection through a round orifice.
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8. Conclusions

Several algebraic interface-sharpening techniques, suitable for incorporation as part of a dimension-by-dimension MUS-
CL-type upwinding strategy, have been derived and studied in this work. Linear and sine-wave reconstructions of the volume
fraction within a mesh cell have been developed, as have modified versions of the Tangent Hyperbola for interface-capturing
(THINC) scheme of Xiao et al. [16]. Techniques for blending the sharpening strategies with a baseline Piecewise Parabolic
Method (PPM) [29] reconstruction have also been presented. The schemes have been incorporated into an incompressible
Navier-Stokes solver that uses a variant of Chorin’s artificial compressibility method to solve the equations in their time-
dependent form and uses a low-diffusion flux-splitting scheme for spatial discretization of the inviscid fluxes. Accurate re-
sults have been obtained for moving discontinuities, the Rayleigh-Taylor instability, a dam-break problem, an axisymmetric
jet instability, the Rayleigh instability, and flow within an ‘in-out’ aerated-liquid injector. The linear and modified THINC
reconstructions, implemented in a conventional MUSCL-type manner, provide very sharp resolution of volume-fraction dis-
continuities but sometimes induce ‘stair-stepping’ behavior. The modified THINC reconstruction, implemented using exact
integration of the flux of material crossing a mesh cell, provides a slightly more diffusive capturing of phase interfaces and is
nearly as robust as the baseline PPM reconstruction. This model appears quite suitable for further evaluation and testing.
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